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Research highlights 

 Worldview-02 increases the number of spectral bands from the traditional 4 in the 

visible and near-infrared spectrum to 8 bands, and in doing so, provides much enhanced 

capability for work on coral reefs. Specifically, this increase facilitates more accurate 

optical derivation of water depth from the satellite imagery. Such bathymetry products 

are needed to answer key questions on the fate of these threatened ecosystems. This study 

demonstrates pre-processing techniques which are simple enough to be accessible to a 

wide user-base, yet sophisticated enough to yield precise datasets. The work adapts a 

traditional model for depth estimation, now allowing the increased spectral information 

delivered by WV2 to be accessed. I finish by explicitly quantifying the added capacity of 

WV2 over more traditional 4-band sensors. The results of this study support the 

widespread use of WV2 by the extensive community of managers and scientists that are 

tasked with mapping and monitoring coral reefs around the world. 

 

Abstract 

Information gathered by remote sensing systems is an important tool in the 

implementation and evaluation of conservation measures for coral reef ecosystems, and 

the launch of the Worldview-02 satellite in October 2009 improved coral reef 

researchers’ capability to map these ecosystems.  A basic, yet essential, mapping product 

for coral reef studies are bathymetric maps, and the increased spectral and spatial 

information provided by the Worldview-02 imagery improve optically-derived 

bathymetric maps.  A standard model for optically-derived bathymetry was modified to 

include the increased spectral information that Worldview-02 imagery provides over 

previous satellites (e.g., QuickBird), and 63 versions of this model, each with a different 

combination of input variables, were compared using an information-theoretic approach.  

The model comparison demonstrated that a model containing the full set of input 

variables (6 band-ratios) provided the most reliable depth estimates even when ground-

truth data were limited.  It was also demonstrated that applying simple sun-glint removal 

and atmospheric correction techniques provided more reliable estimates of model 

parameters thereby improving precision of depth estimates.  Finally, an accuracy 

assessment quantified the benefit provided by the modified model and increased spectral 

information, and it identified increased accuracy in depth estimates over seafloor features 

with high albedos.  The results of this study support the use of Worldview-02 imagery in 

the mapping of near-shore coral reef systems in support of the implementation and 

assessment of conservation measures. 
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Introduction: 

The health of coral reef ecosystems around the world has precipitously declined 

due to increased anthropogenic and natural stresses leading to calls for expanded actions 

to conserve the resources provided by these ecosystems and prevent further degradation 

(Gardner et al. 2003; Hughes et al. 2003).  Marine spatial planning, which includes the 

establishment of marine protected areas, is the process of designing policies and that 

incorporate the spatial patterns inherent to ecosystems, and it is increasingly gaining 

attention as a tool in the conservation of marine ecosystems (Douvere 2008).  Satellite-

based imaging systems with spectral bands within the visible spectrum (400 – 700 nm) 

reliably provide information at spatial scales needed to implement spatially-based 

conservation actions for coastal locations (Andrefouet and Riegl 2004), and they enable 

observations of the benthos at greater spatial and finer temporal scales than those allowed 

through field observation alone (Lubin et al. 2001; Hochberg and Atkinson 2003; 

Hochberg et al. 2004).   

Within the oligotrophic waters commonly occurring in reefal systems, 

bathymetric maps derived from remotely-sensed imagery estimate seascape topography 

down to depths of 25 m (Stumpf et al. 2003), improve marine spatial planning by 

improving habitat classification maps (Mumby et al 1998), and provide a surface 

representing the physical boundaries shaping water motion in hydrodynamic models that 

can be used to better understand how predicted changes in oceanic and atmospheric 

conditions will affect coral reef ecosystem health and resilience in the near future (Heron 

and Skirving 2004).  The spectral information provided by the six Worldview-02 bands 

within the visible spectrum increase the amount of spectral information available for a 

study area thereby improving the quality of mapping products for near-shore reefal 

systems. 

Bathymetric maps of the coastal seascape can be created using information 

gathered through either active or passive remote sensing (Lyzenga 1978; Stumpf et al. 

2003; Brock et al. 2004); both of which have associated costs and benefits.  Light 

detection and ranging (LiDAR) is an active remote sensing technology in which a laser 

detects the distance of the sensor to the target (Brock et al. 2004).  Wavelengths in the 

blue-green spectrum allow the laser to penetrate the water column and provide highly 

reliable depth estimates at fine spatial scales.  Conversely, passive remote sensing 

technologies rely on a combination of upwelling radiance in the visible light spectrum 

(400 – 700 nm) detected by a sensor and known physical parameters affecting light 

attenuation within the water column to model depth (Lyzenga 1978; Stumpf et al. 2003).  

Furthermore, satellite-based instruments cover larger areas over shorter time periods, 

have shorter return intervals, and can observe remote locations inaccessible by airborne 

LiDAR systems at the cost of decreased accuracy in depth estimates and coarser spatial 

resolution (Brock et al. 2004).  Two common spectral bands on satellite-based sensors are 

the blue and green bands, and the combination of these two bands has been used to derive 

bathymetry from QuickBird (e.g., Hochberg and Atkinson 2004), IKONOS (e.g., Stumpf 

et al. 2003), and Landsat imagery (e.g., Liceaga-Correa and Euan-Avila 2002), which 

have similar, though not identical, spectral responses to the blue and green bands on the 

Worldview-02 satellite.   

Given this demonstrated capability to derive depths in clear coastal waters using 

information provided by as few as 2 bands in the visible spectrum, the increased number 
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of water-penetrating spectral bands provided by the Worldview-02 (WV2) satellite (6 

bands) should improve water-depth retrievals.  This study’s overall goal was to identify 

and quantify the benefit provided by the increased number of bands for depth estimation.  

The first goal of this study was to identify an optimal model for estimating bathymetry 

within a near-shore coral reef system based on the six water-penetrating bands and 

quantify the accuracy of this model.  The second goal of this study was to identify an 

optimal level of pre-processing prior to water-depth derivation, and the final goal was to 

identify an optimal set of pre-processing steps and model to be used when ground-truth 

data are limited. 

 

Methods: 

Overview 

 To meet the study’s goals, the WV2 imagery was pre-processed to at-sensor 

radiance values, to remove sun-glint, to estimate reflectance, and to remove atmospheric 

effects. LiDAR data overlapping with the WV2 image are the ground-truth for depth 

estimation.  The first goal of identifying the best model for water-depth retrieval was met 

by selecting a 4-km by 4-km subset from the area overlapped by the LiDAR and WV2 

data and comparing candidate models’ fit to these data using an information-theoretic 

approach after each pre-processing step.  The candidate models for each pre-processing 

step were aggregated and compared the approach to meet the goal of identifying the 

optimal set of pre-processing steps.  These two goals represent an idealized situation in 

which ample ground-truth data are available; however, the sample size used to address 

these two goals was not realistic.  Four more realistic sample sizes were used to compare 

model selection frequency for ten models, again using the information-theoretic 

approach, to meet the goal of identifying an optimal model with limited-ground-truth 

information.  Finally, an accuracy assessment quantified both the precision of the best-fit 

model and its improvement over the more standard model. 

 

Study location 

The study location was a coastal area off-shore of Key Largo in the northern 

Florida Keys National Marine Sanctuary.  The study area was chosen due to the presence 

of high resolution LiDAR data (USGS 2008) covering the majority of the seafloor.  The 

area contains seafloor features (e.g., reefs, sea grass beds, sand flats) with spatial 

arrangement in depths from the intertidal to 15 m typical to those found in shallow, near-

shore coral reef ecosystems around the world thereby providing a representative coastal 

area for assessing water-retrieval models.  

 

Worldview-02 imagery 

A WV2 image was delivered by Digital Globe with geometric corrections and 11-

bit digital numbers (DN) at a 2-m spatial resolution and a nearest-neighbor resample 

kernel (Figure 1).  The image was converted from DN to at-sensor radiance values (µW 

cm
-1

 sr
-1

 nm
-1

) through ENVI Service Pack 2.  A patch to correct a bug affecting 

estimated radiance values for WV2 data was applied to ENVI prior to the conversion.  

For the purposes of this study, bands in the visible spectrum (bands 1 through 6) were 

pre-processed from the initial radiance values to reflectance values and used for depth 

estimation.  Bands 7 and 8 were not used during bathymetric derivation because sea-
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water is opaque in the NIR region meaning these bands would provide no information 

useable for estimating depth.  However, this opacity means these two bands are essential 

for acquiring the information on sea-surface state within a pixel necessary for sun-glint 

removal. 

 

 
Figure 1: True color version of the WV2 image delivered by Digital Globe.  Pixels from Subset 1 (red 

box) were used for model comparison to identify the overall best-fit model and best-fit model with 

limited ground-truth data.  Subset 2 (orange box) and Transects A, B, C, D, and E (black lines) were 

used for accuracy assessments. 

 

Initial investigation of the WV2 imagery showed a difference in the images 

created by the ‘traditional’ spectral bands, which are equivalent to QuickBird’s 4 spectral 

bands (i.e., the blue, green, red, and NIR 1 bands), and the ‘new’ spectral bands provided 

by WV2 (i.e., the coastal, yellow, red-edge, and NIR 2 bands).  Figure 2 shows an 

example of observed difference between band sets.  The source of the difference was 

unknown, but the observed difference in boat wakes and sun-glint off of wave crests 
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indicated that the two band-sets observed different ocean-surface states.  Thus, sun-glint 

removal and band-ratios for bathymetric derivation were limited to within the 

‘traditional’ and ‘new’ band-sets to reduce potential effects of the different ocean surface 

states.  For example, blue/green was a usable band combination, but the coastal/green 

combination was not usable because the two bands belong to different sets.  For sun-glint 

removal, the NIR1 band was to estimate water surface properties in the blue, green, and 

red bands, and the NIR2 band similarly was used for the coastal, yellow, and red-edge 

bands. 

 

 
Figure 2: Close-up from the a) coastal and b) blue bands demonstrating the difference in pixel values 

between the ‘traditional’ and ‘new’ bands.  Also provided are still images from video acquired by a 

drop-cam showing c) sand and d) dense sea grass.  The top area in the yellow box (rows 1 and 2) is 

similar in both bands, but the bottom area (rows 3 to 7) has a different pattern in each band.   

 

Sun-glint removal 

 Sun-glint was present in the WV2 image and was removed using the deglinting 

model of Hedley et al (2005), which generalized the methods of Hochberg et al (2003).  

The deglinting process was applied to the at-sensor radiance, tL , values prior to 

estimating reflectance and correcting for atmospheric effects.  The method first estimates 

a linear relationship between the visible band being corrected and a near infrared band 

through linear regression on a sample of deep-water pixels where sun-glint was present.  

The minimum NIR value, NIRMin , from the sample, which represents the ‘ambient,’ non-

glint NIR, is also identified.  The radiance values are then corrected by   

 ,( )t t t NIR NIRL L b L Min  (1) 
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where tL  is the deglinted radiance value, b is the slope estimated by the linear regression, 

,t NIRL  is the NIR radiance value, and NIRMin  is the minimum value for the near infra-red 

band established from the sample. 

 

Apparent reflectance 

Converting at-sensor radiance values to at-sensor reflectance, called apparent 

reflectance, prior to atmospheric correction is common because it represents the 

combined reflectivity of the atmosphere and surface system (Gao et al. 2009).  Apparent  

reflectance, *

obs
, is defined as (Gao et al. 2000, 2009) 

 *

0 0

t
obs

L

F
, (2) 

where 0F is the corrected extraterrestrial irradiance.  The parameter 0 equals 01 cos( )  

where 0 is the sun azimuth angle.  

Extraterrestrial irradiance at the top of the atmosphere is well quantified and 

varies with periodic change in the Earth-Sun distance due to orbital eccentricity and the 

Earth’s tilt.  This variation in extra-terrestrial irradiance is predictable, and Gordon et al. 

(1983) and Gregg and Carder (1990) estimated the corrected extraterrestrial irradiance for 

wavelength, 0 ( )F , as 

 

2

0 0

2 ( 3)
( ) ( ) 1 0.0167 cos

365

D
F E  (3) 

where 0 ( )E is the mean extraterrestrial irradiance for a wavelength and D is the Julian 

day of the year measured from 1 January.  Extraterrestrial irradiance for band i is 

estimated as: 

 
2

1

0 0 ( )F F d  (4) 

where 1  and 2 are the starting and ending wavelengths for band i , respectively.   

 

Deep-water correction for atmospheric effects 

The goal of atmospheric correction is to estimate atmospheric reflectance and 

remove its effect from apparent reflectance leaving reflectance from the water’s surface 

and the sea floor (Gao et al. 2000).  One way to estimate atmospheric effects is to use 

radiative transfer theory to model the absorption and scattering due to gases and aerosol 

particles (Gao et al. 2009); however, several issues contribute to increase the complexity 

of these models.  Radiative transfer models for scatter due to aerosol particles estimate 

the number and size distribution of the particles.  In maritime environments, the aerosol 

component is greater than over land, and the particles are heterogeneously distributed 

(Gregg and Carder 1990).  Additional complications arise when short-term changes in 

ocean conditions that affect the aerosol component (e.g., surface roughness, wind speed) 

and the effects of scattering from adjacent pixels are considered.  Several algorithms and 

modules for atmospheric correction that rely upon radiative transfer theory exist (e.g., 

FLAASH, 6S, Tafkaa); however, they require knowledge of many input parameters 

regarding the atmospheric and oceanographic conditions occurring at the time of image 
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acquisition (Adler-Golden et al. 2005; Gao et al. 2009), and they are not always available 

to those interested in atmospheric corrections.  Relatively simpler, though less accurate, 

image statistic- based methods are available enabling those without access to the 

aforementioned algorithms and modules to correct for atmospheric effects.  One such 

method is dark-body correction, which uses the known properties of a dark-body (e.g., 

ground cover in shadow or deep water) to estimate the ‘ambient’ atmospheric reflectance 

(Gao et al. 2009).  Apparent reflectance can then be corrected to water-surface 

reflectance by subtracting the ambient atmosphere. 

Formally, apparent reflectance, *

obs
, is a combination of atmospheric 

reflectance, *

atm
, seafloor reflectance,

*

sf , and water-surface reflectance, *

g , such that 

 
* * * *

obs atm sf gt t  (5) 

where t  and t are the transmittances through the water’s surface and through the 

atmosphere, respectively.  Atmospheric reflectance can be estimated if values for the 

apparent reflectance, the water-surface reflectance, and the seafloor reflectance are 

known.  The apparent reflectance was estimated from the at-sensor radiance values and 

estimated extraterrestrial irradiance using Eq. 2, 3, and 4.  Sea water reflectance is well 

described in the literature, and the reflectance described by Moral and Prieur (1977) was 

used for this value.  Seafloor reflectance varies with benthic composition; however, deep 

waters can be assumed to have a seafloor reflectance equal to zero at all wavelengths 

allowing an image subset over deep-water to be used in estimating atmospheric 

reflectance.   

 

LiDAR Digital Elevation Model 

In 2006, a joint effort by the US Geological Survey (USGS), the National 

Aeronautics and Space Administration (NASA), and the National Parks Service (NPS) 

mapped the seafloor topography for an area within the Florida Keys National Marine 

Sanctuary (Figure 3) using the Experimental Advanced Airborne Research LiDAR 

(EAARL) system (USGS 2008), which uses a laser focused at the 532 nm wavelength 

(Bonisteel et al. 2009) to penetrate the water column and return depth estimates for the 

seafloor.  The resulting digital elevation model (DEM) had a 1-m spatial resolution and a 

vertical accuracy of ± 15 cm for depth estimates.  The EAARL DEM was re-projected 

from NAD83 to WGS84 using triangulation with 25 automatically selected ground 

control points in ENVI to match the WV2 image’s projection and then resampled to a 2-

m spatial resolution to match that of the WV2 image.  Both the re-projection and re-

sampling used a nearest neighbor resample kernal.  The resampled DEM provided a 

‘ground-truth’ data with which models for optical derivation of bathymetry were tuned 

and assessed for accuracy.   
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Figure 3: Digital elevation model created using the EAARL system (USGS 2008) and used as the 

‘ground-truth’ depth values for the optically-derived bathymetry.  Subsets 1 and 2, and Transects A 

through D shown in Figure 1 are also shown here. 

 

Optically-derived bathymetry 

According to Beer’s Law, light attenuation in the water column increases 

exponentially as depth increases (Lyzenga 1978; Stumpf et al. 2003).  Additionally, 

attenuation varies by wavelength resulting in less attenuation and greater depth 

penetration in the blue region of the visible spectrum than the green or red regions.  

These two properties are the basis for optically-derived bathymetry from multispectral, 

passive sensors used in this study.  One standard model used to estimate depth from 

passively collected data is that of Stumpf et al (2003).  In the Stumpf model, the 

estimated depth, *Z , is related to the ratio of the natural logarithm for reflectance of two 

bands such that 
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*

1 0

ln( )

ln( )

i

j

a
Z b b

a
 (6) 

where i  and
j
 are the reflectance values for bands i and j, and 1b , 0b , and a are 

constants.  The constant a  is set to ensure that the natural logarithm is positive and the 

ratio creates a linear response, and a value of 1000 was used for this study.  The 

constants 1b and 0b  are estimated by fitting a linear regression of the band-ratio to a set of 

corresponding ground-truth data points.   

Equation 6 was modified in two ways for this study.  The atmospheric correction 

and deglinting process resulted in reflectance values that were greater than or equal to 0 

( * 0 ); however, the natural log cannot be applied when the reflectance equals 0.  

Additionally, the ratio’s denominator cannot equal 0.  Thus, the first modification was to 

add the constant e within the natural log in both the numerator and denominator thereby 

ensuring that the minimum value for either was 1.  The second modification was to 

expand the number of band ratios used for depth estimation.  Thus, the general model for 

optically-derived bathymetry becomes  

 *

1 1 1 1 0...n n n nZ b Z b Z b Z b  (7) 

where 

 
ln( )

ln( )

i
n

j

a e
Z

a e
 (8) 

the constants 1 1 0, ,..., ,n nb b b b  are estimated through multiple linear regression and 

, 1,...,1,0n n  represent the n-th band-ratio.  Eq. can be re-written as  

 *

0

1

n

n nZ b Z b  (9) 

where nb is the estimated coefficient for n-th band ratio Z .  This final model essentially 

expands the model of Stumpf et al. (2003) from a linear regression to a multiple linear 

regression.  This general model was used to estimate depth by creating band-ratios for the 

different band combinations enabled by the six WV2 bands in the visible spectrum.  The 

models’ results are compared using an information theoretic approach to identify the 

optimal model and the optimal level of pre-processing for bathymetric derivation. 

 

Candidate models 

The two sets of ‘traditional’ and ‘new’ bands allowed for six band-ratios (Table 

1).  In turn, these six band-ratios provided a complete set of 64 candidate models.  One 

model uses no band-combinations thereby representing a situation where depth values 

were estimated by a purely random process.  This was not a logical hypothesis in the 

current situation; therefore, this model was excluded from the model comparison 

resulting in 63 models for the comparison.   These 63 candidate models were used to 

estimate depth from imagery with four levels of pre-processing: 1) no pre-processing, 2) 

deglinting only, 3) dark-water correction only, and 4) both deglinting and dark-water 

correction).  The aggregation of the 63 models from the each of the 4 pre-processing 

levels resulted in a total of 252 models for the model comparison.  
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Table 1: Band ratios used in Eq. 9 for bathymetric derivation. 

Band i Band j Band ratio 

Blue Green 
1Z  

Blue Red 
2Z  

Green Red 
3Z  

Coastal Yellow 
4Z  

Coastal Red-edge 
5Z  

Yellow Red-edge 
6Z  

 

Model comparison 

The combinations of various band-ratio inputs and pre-processing into the depth 

derivation model were compared using an information-theoretic approach based on 

Akaike Information Criterion (AIC; Akaike 1973; Burnham and Anderson 2003), which 

allowed the multiple competing models to be compared simultaneously.  Each model 

represented a competing hypothesis that a given set of band ratios and pre-processing 

steps was the best model for estimating depth.  Under this approach, an AIC value was 

calculated for each model (Akaike 1973), and a corrected AIC value (AICc) that adjusts 

for the number of estimable parameters was calculated for each model (Burnham and 

Anderson 2003).  The candidate models were then ranked based on the (AICc) with the 

model with the lowest AICc value was considered the best-fit model and ranked 1.  Based 

on the difference in AICc values between the best-fit model and the competing models 

(ΔAIC), an AIC weight (AICw) was calculated to quantify the evidence supporting the 

best-fit model.   

 

Accuracy assessment 

 The standard blue/green combination and best-fit model were assessed for 

accuracy by comparing the depth values estimated by the models with the LiDAR depth 

values for a second subset.  The root-mean-squared error (RMSE) and normalized RMSE 

(NRMSE) for the two models was calculated for pixels within Subset 2 and along 

Transects A, B, C, and D.  These values provide an estimate of precision for each model, 

and a comparison quantified the increase in precision provided by the best-fit model.   

 

Sample sizes 

To identify the optimal model for depth derivation and the optimal pre-processing 

steps, a sample of pixels (n = 1,000,000) was randomly selected from a 4-km by 4-km 

area (N = 4,000,000; Subset 1; Figure 1).  To address these two issues under more 

realistic conditions where sampled size was limited, Subset 1 was re-sampled 100 times 

for each of four sample sizes (n = 100; n = 1000; n = 10,000; n = 100,000), and the model 

selection frequency for the ten top ranked models were compared.  These sample sizes 

are similar to those of (Purkis et al. 2008; Rowlands et al. 2009; Purkis et al. 2010) who 

used the Stumpf model for bathymetric derivation.  For the accuracy assessment, a 

second 4-km by 4-km image subset (N = 4,000,000; Subset 2; Figure 1) was selected.  

Transects A, B, C, and D were also used for accuracy assessment, and their sample sizes 

were 1501 pixels, 1500 pixels, 1248 pixels, and 1110 pixels, respectively. 
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Results: 

Best-fit model for optically-derived bathymetry 

 The overall best-fit model was the full model using reflectance values corrected 

for both sun-glint and atmospheric effects, and the blue/green band-ratio with sun-glint 

removal and deep-water correction was the best-fit model among models with a single 

band-ratio (Table 2).  The full model was also the best-fit model within all the four levels 

of pre-processing.  Of the models using a single band-ratio, the blue/green band-ratio was 

the best-fit model within three of the pre-processing levels, and the coastal/yellow band-

ratio was the best-fit model within the fourth pre-processing level (Table 2).  Seven of the 

top ten ranked models had both deglinting and dark-water correction applied prior to 

depth estimation indicating that this level of pre-preprocessing was optimal (Table 2).  

 
Table 2: Model comparison results (AIC values, delta AIC, AIC weights) for the ten overall best-fit 

models (Ranks 1 through 10) and the best models using only one-band ratios for each level of pre-

processing (Ranks 146, 210, 213, and 214).  The AIC weight equals 1.00 for the Rank 1 model and 

equals 0.00 for all other models indicating that the evidence in the data fully supports the Rank 1 

model as the best-fit model. 

Rank Input variables Pre-preprocessing AICc ΔAIC AICw 

1 
1 2 3 4 5 6, , , , , Z Z Z Z Z Z  SGR, DWC 2041411.37 0 1.00 

2 
1 2 3 4 5 6, , , , , Z Z Z Z Z Z  None 2118586.96 77175.59 0.00 

3 
1 2 3 4 5 6, , , , , Z Z Z Z Z Z  SGR 2168722.00 127310.63 0.00 

4 
1 2 3 4 5, , , , Z Z Z Z Z  SGR, DWC 2211770.24 170358.87 0.00 

5 
1 2 3 4 6, , , , Z Z Z Z Z  SGR, DWC 2238162.50 196751.13 0.00 

6 
1 2 3 4, , , Z Z Z Z  SGR, DWC 2249686.19 208274.82 0.00 

7 
1 2 3 5 6, , , , Z Z Z Z Z  SGR, DWC 2275131.93 233720.56 0.00 

8 
1 3 4 5 6, , , , Z Z Z Z Z  SGR, DWC 2276415.44 235004.06 0.00 

9 
1 2 4 5 6, , , , Z Z Z Z Z  SGR, DWC 2287107.95 245696.57 0.00 

10 
1 2 3 6, , , Z Z Z Z  SGR, DWC 2291160.25 249748.88 0.00 

146 
1Z  SGR, DWC 2797353.22 755941.85 0.00 

210 
4Z  DWC 3046508.74 1005097.37 0.00 

213 
1Z  SGR 3054637.59 1013226.22 0.00 

214 
1Z  None 3059799.81 1018388.44 0.00 

SGR - Sun-glint removal 

DWC - Deep-water correction 

 

Best-fit model with limited ground-truth data 

Of the ten candidate models compared using the four test samples sizes, the three 

top ranked models in Table 3 had a combined model selection frequency greater than or 

equal to 97%.  These three models all used the full model and differed only in the level of 

pre-processing applied prior to depth estimation.  Individually, the full model with 

deglinting and deep-water correction (Rank 1 model in Table 2) was the most frequently 
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selected model (frequency ≥ 84%; Table 3).  Together, the Rank 2 and 3 were 

occasionally selected as the best-fit model, and the seven other candidate models 

included in the comparison (Ranks 4 through 10 in Table 2) were rarely or never selected 

as the best-fit model (Table 3).   

 
Table 3: Selection frequency for the models ranked 1 through 10 in Table 2.  The full model with 

sun-glint removal and dark-water correction (Rank 1) was consistently the best-fit model, and the 

full-model with varying levels of pre-processing had a selection frequency greater than or equal to 

97% for all four sample sizes.   

Model (Rank) 
No. Points 

100 1000 10,000 100,000 

1 84 % 100  % 94 % 89 % 

2 4 % 0 % 2 % 6 % 

3 9 % 0 % 4 % 5 % 

4 1 % 0 % 0 % 0 % 

5 0 % 0 % 0 % 0 % 

6 0 % 0 % 0 % 0 % 

7 1 % 0 % 0 % 0 % 

8 0 % 0 % 0 % 0 % 

9 0 % 0 % 0 % 0 % 

10 1 % 0 % 0 % 0 % 

 

Accuracy assessment 

 In general, the full model better estimated depth than the blue/green model; 

however, the full model suffered elevated errors when artificial objects (e.g., boats) 

contaminated pixels.  For all pixels included in Subset 2 where LiDAR and WV2 

imagery were both available (n = 3,920,674), the blue-green model had a greater 

precision in depth estimates (RMSE = 1.07 m; NRMSE = 7.64%) than the full-model 

(RMSE = 1.45 m; NRMSE = 10.29%); however, comparison of pixels with an error of 

less than 10 m between the observed and predicted depths (n = 3,920,392) in both models 

resulted in the full model having a higher precision (RMSE = 0.77 m; NRMSE = 5.49%) 

then the blue/green model (= 1.03 m; NRMSE = 7.32%; Figure 4).  The sources of these 

errors were primarily boats and their wakes.   

Comparisons of LiDAR depths and the predicted depths along Transects A, B, C, 

and D further demonstrated that the full model better predicted depth than the blue/green 

model (Figure 5).  These comparisons also demonstrated that the blue/green model 

overestimated depth for shallow reef areas and underestimated depth for sandy areas.  

The full-model displayed a similar pattern but with a smaller magnitude in the errors 

between observed and predicted depths.  This indicates that the greatest sources of error 

in depth retrievals for both models are submerged features with high albedos; however, 

the influence differs between models with the blue/green model incurring greater error 

than the full model.   
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Figure 4: LiDAR depth and predicted depths for pixels in Subset 2 after deglinting and deep-water 

correction for a) the blue/green model and b) the full model and after removal of pixels with absolute 

errors greater than or equal to 20 m for c) the blue/green model and d) the full model.  Lines provide 

references for absolute differences between the LiDAR depth and estimated depth of 0 m (i.e., no 

difference), 1 m, and 2 m. 



14 

 

 
Figure 5: LiDAR depth (black line) with depth estimated by the blue/green band ratio (red) and the 

best-fit model (blue) along a) Transect A, b) Transect B, c) Transect C, and d) Transect D.  The full-

model better estimated depths for shallow reef areas (e.g., reef crests) and sand than the blue/green 

band-ratio, and it had a lower root-mean-squared error (RMSE) and normalized RMSE (NRMSE) 

indicating an improvement in depth estimation. 
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Discussion: 

The WV2 satellite provides finer spatial resolution and more spectral information 

in the visible spectrum than previous satellites, positioning it as the forerunner for coral 

reef mapping.  Prior to the launch of WV2 in 2009, QuickBird imagery had the finest 

spatial resolution for commercial satellites (~ 2.4 m) making it the satellite of choice for 

mapping coral reefs.  This spatial resolution combined with three bands in the visible 

spectrum allowed near-shore reefal systems to be mapped and monitored in greater detail 

than had been previously possible.  WV2 elegantly builds on the capabilities provided by 

QuickBird by increasing both the spatial resolution and available spectral information, 

and this increase in information provides greater detail for mapping coral reef 

ecosystems.  The increased capabilities provided by the sensor however require a re-

examination of established processing procedures, so as to ensure that the full capabilities 

of the WV2 imagery for reef mapping can be accessed.  This study examined one such 

established method, optically-derived bathymetry using a band-ratio, and identified the 

new capacity provided by the additional bands. 

This study demonstrates that expanding the Stumpf model to include a greater 

number of band-ratios, provides a better solution for optically-derived bathymetry.  Such 

models have existed for over 30 years; Lyzenga (1978) developed the underlying theory 

and Lyzenga (2006) further developed the methodology resulting in a multiple linear 

regression similar to that used in this study.  However, that model relies on knowing the 

optical properties of the water at the time of image acquisition.  The model developed in 

Stumpf et al. (2003) built on the strategy developed by Lyzenga, but differed in that it 

used a ratio of the blue/green spectral bands for depth estimates. The upshot being that a 

reduced number of parameters now need to be estimated; two of which could be derived 

by fitting a linear regression of the band-ratio values to known depths.  The uplift 

provided by the Stumpf model is that it enabled depth derivation in a greater number of 

situations, including those where accurate measurements of the water properties (e.g., 

turbidity), were unavailable.  The model developed and evaluated in this study expands 

the Stumpf model from a linear regression to a multiple-linear regression, allowing for 

the increased amount of information provided in WV2 imagery to be included in the 

retrieval of water depth.  The increased capacity provided by the WV2 imagery, coupled 

with the new model presented herein, has a greater precision in water-depth retrievals.  

More specifically, the derived depths over seafloor features with high albedos, such as 

sand and shallow reef tops, were more precise than could be achieved using more 

standard models and the 4 spectral bands of more traditional satellites.   

This study affirms that deglinting and atmospheric correction methods should be 

applied to WV2 imagery prior to the development of bathymetric maps in order to 

increase the accuracy of the final products.  Pre-processing methods alter the estimated 

radiance and reflectance values to account for known sources of error in the data, 

resulting in values that more closely estimate the true radiance and reflectance.  Thus, it 

is not surprising that applying both pre-processing procedures prior to fitting the depth 

derivation model improved retrieved water-depths.  The two procedures used in this 

study were relatively simple, and it is expected that more sophisticated correction models 

would further improve the resulting parameters estimates thereby improving depth 

retrievals.  Therefore, a primary priority for users of WV2 data should be the adaptation 
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of pre-existing atmospheric correction algorithms that are applicable over both land and 

water targets for use with WV2 data.   

Declines in the health of coral reefs around the world have led to increased calls 

for conservation and protection of these ecosystems (Gardner et al. 2003; Hughes et al. 

2003), including the development of conservation actions rooted in marine spatial 

planning (Douvere 2008).  Imagery acquired by the WV2 satellite increases the available 

spectral and spatial information within a target area, thereby increasing researchers’ 

capability to map coral reef ecosystems.  This increase in capability improves baseline 

information, monitoring of changes over time, and evaluation of conservation measures; 

all of which are vital to implementing and improving conservation efforts.  WV2 imagery 

bridges gaps in coral reef mapping and conservation previously addressed by more 

traditional 4-band sensors, such as QuickBird, thus positioning the satellite as a vital tool 

in the near-term and long-term conservation of these threatened ecosystems.  The 

development and launch of this satellite is a boon to the coral reef mapping community, 

and the information acquired by this sensor will improve the conservation of the goods 

and services provided by coral reef ecosystems. 
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